A Fast Matrix Majorization-Projection Method for Penalized Stress Minimization With Box Constraints
نویسندگان
چکیده
منابع مشابه
A smoothing majorization method for l22-lpp matrix minimization
We discuss the l2-lp (with p ∈ (0, 1)) matrix minimization for recovering low rank matrix. A smoothing approach is developed for solving this non-smooth, non-Lipschitz and non-convex optimization problem, in which the smoothing parameter is used as a variable and a majorization method is adopted to solve the smoothing problem. The convergence theorem shows that any accumulation point of the seq...
متن کاملStress Majorization with Orthogonal Ordering Constraints
The adoption of the stress-majorization method frommulti-dimensional scaling into graph layout has provided an improved mathematical basis and better convergence properties for so-called “force-directed placement” techniques. In this paper we give an algorithm for augmenting such stress-majorization techniques with orthogonal ordering constraints and we demonstrate several graphdrawing applicat...
متن کاملA Fast Projection Method for Connectivity Constraints in Image Segmentation
We propose to solve an image segmentation problem with connectivity constraints via projection onto the constraint set. The constraints form a convex set and the convex image segmentation problem with a total variation regularizer can be solved to global optimality in a primal-dual framework. Efficiency is achieved by directly computing the update of the primal variable via a projection onto th...
متن کاملMajorization minimization by coordinate descent for concave penalized generalized linear models
Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing ...
متن کاملMajorization-Minimization for Manifold Embedding
Nonlinear dimensionality reduction by manifold embedding has become a popular and powerful approach both for visualization and as preprocessing for predictive tasks, but more efficient optimization algorithms are still crucially needed. MajorizationMinimization (MM) is a promising approach that monotonically decreases the cost function, but it remains unknown how to tightly majorize the manifol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2018
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2018.2849734